TER'TTARY MARSUPIALS FROM VICTORLA, AUS'TRALIA.

By Professor R. A. Stirton, Museum of Paleomtology, I'niversity of Californin, U.S.A.

'Text-figures 1-6.
Intronermion.
Three localities in Viotoma have yieded mammalian fossils of 'Tertiary age, and a fourth a fossil of possible Tertiary age. These sperimens have been referred to in literature, but there is no detailed deseription of their characters. Thongh only one new name is proposed at this time, the sperimens are illustrated and described for finture referente.

One of these from near Ballarat is dereribed as a new gemms and new speces. It is apparent that two other new genera are represented here mader the heading Diprotodontidae and in alt probability generie characters will be diserenible in thene even when other elosely related genera have been desmibed. But in introducing generic names the binomial system monst be nsed, and it is doubtfinl if characters on the sperific level can ever be recognized in these specimens exrept possibly in Nos. P. 15910 ant P. 15909 from Beanmaris. Finthermore this provedure seems appropriate sinoe it is doubtful whether more diagnostic materials representing these forms will be found in the localities from which they came, and if they are diseovered, new manes with adequate descriptions ran be made at that time. 'Therefore to avoid ronfinsion for taxonomists and stratigraphers in the finture I have not applied the binomial system of nomemelatme to these interesting fossils.

Mr. R. 'T. M. Pesoott, Direotor', and Mr. Ednmmed I). (iill. Chrator of Fossils, National Mnsemm of Victoria, kindly loancol the specinens to the anthor for studr. Assistance in making available comparative materiak was given by Mr. Harold O. Fletcher. (Mrator of Fossils, aur ber Mr. Ellis 'Tronghton, (furator of Manmals, Anstralian Masemm, Srdney. I ann gratefinl to Mr. Hobart M. Van Densen, American Mnsemm of Natural History for measurements of Recent specimens. The shaded ilhnstrations were prepared hy Mr. Owen J. Poe, staff artist of the Museum of Paleontology, University of Califormia, while text-figures 6 and 3_{B} were sketeled by the anthor. A Fulbright Award in 1953 made this study possible.

Fossil Poisol, (irantie Burn, Near Hamblons. PHALANGERIDAE.

Text-figure 1.

A (in

we $p a$

hy pr
Text-fig. 1. PHALANGERIDAE, right upper molar, natural size; Nat. Mus. Vict., No. 15777; hy, hypocone; me, metacone; μ, paracone; $p r$, protocone. A. Labial riew. B. Occlusal view.

Cuscus, Gill, 1953A, p. 409.
"Cuscus type", (1) Gill, 1953c, p. 107.
cf. Cuscus, Gill, 1955, pl. 1, figs. 1-4.
Mr. Edmund D. Gill discovered this upper molar in a fossil podsol under a basalt member where the Grange Burn flows off the basalt on to Tertiary rocks near Hamilton, Victoria. The site was 6 inches under the basalt and near a waterfall, 1 mile upstream from Forsyth's Bank. He referred it to the Upper Pliocene.

This is the crown of a moderately worn right molar without roots. Nat. Mus. Vict. reg. No. P. 15777.

Paracone higher and larger than metacone (but measured from base of enamel this is not true); protocone and metacone so well worn commissure; at labial base not observable; low but distinct crests extend from paracone and metacone down toward protocone and hypocone; tooth too much worn to show any indication of a crenulated surface; no cingula.

The crown pattern is much like that in Phalanger m. nudicaudatus (Gould). if the fossil is an M^{2} or M^{3}. It certainly is not M^{+}because there is an appressed surface on the posterior edge indicating a tooth was behind it. It

[^0]does not appear to be M^{1} because the appressed area in front is too wide for P^{3}. Furthermore, the anterior moiety is wider than the posterior moiety.

The main difference that I see between Phalanger m. nudicaudatus and Phalanger o. peninsulae Tate and the fossil is in the size of the tooth. It is approximately twice the size of these living species. Also, the teeth seem to be relatively more elongate in the Recent forms, and there is a prominent median lingual inflection in the fossil. If more teeth were represented of this animal, other conspicuous differences should appear.

Marine Bribs at Fonstthes Bank, (ipange Burn, Hamamon. STHENURINAE.

Text-figure 2.
Wallaby (Halmaturus?), Colliver, 1933, p. 71.
"Macropus in the wide sense ", Gill, 1953A, p. 409.
"Macropus type ", (2) Gill, 1953c, p. 107.
cf. Macropus, Gill, 1955, pl. 1, figs. 5-8.
This specimen has been referred to the Lower Pliocene by Gill (1953A).
Part of left mandible with most of alveolus for P_{3}; roots of M_{1} and fragment of tooth; well-preserved M_{2}; anterior edge of alveolus of M_{3}. University of Melbourne, Dept. Geol. reg. No. 2019.

Alveolus indicates P_{3} larger than M_{1} or $M_{2} ; M_{1}$ smaller than $M_{.2}$; no evidence for size of M_{3}; no evidence of position of mental foramen; M_{2} rather elongate; narrow, median anterior shelf-like cingulum; low forelink extends to anterior cingulum from protoconid; protolophid sharp, slightly crescentic; median valley V-shaped; low midlink extends down to bottom of median valley from hypoconid; hypolophid sharp, slightly crescentic; posterior end of tooth with slight posterior extension at lower enamel border; no postlink; enamel surface not pitted or finely grooved.

STHENURINAE, part of left mandible, natural size; Univ. Melbourne Dept. Geol., No. 2019. A. Occlusal view. B. Labial view.

The Forsyth's Bank specimen is referable to the subfamily Sthenurinae in all of the characters of its M_{2}. The described species referable to that subfamily
(ㄹ)-See footnote 1 .
are Sthenurus atlas (Owen, 1873; 1874) from the Wellington Cave (genotypic species), S. pales DeVis (1895) and "Sthemurus" oreas DeVis (1895) from the Darling Downs region, and "S." occidentalis Glauert (1910) from the Mammoth Caves of Western Australia. The Victorian specimen is probably more distantly related to the much smaller "Halmaturus" vishnu DeVis (1895) and "Halmaturus" odin DeVis (1895) from the Darling Downs region which also have Sthenurus-like molars but narrow rather trenchant premolars. The alveolus for the premolar in the Forsyth's Bank animal appears to have been too large and bulky for either vishnu or odin. and is more suggestive of those in the species listed above. The generic and specific relationships of the specimen at hand cannot be determined until a premolar is found. Unfortunately neither the stratigraphic position nor the exact geographic location of the types mentioned above from the Darling Downs region have been established.

Maline Sandringham Sanis, Braumalis.

Three diprotodont (Diprotodontidae) sperimens were pirked up on the tide swept shore platform at Beammaris. 'Two of these (M.U.G.D. 2020 and P. 15909) probably belong to the same sperefes. and to a group fresuently called "nototheres'", thongh they are not rlosely related to the genus Votoherium Owen of abont the same size. The other (P.15911), deerribed on page 127 in this report, is mudh more primitive and smaller". 'The preservation and fluorine tests of these sperimens indicate that they come from the contiguous cliffs of the Sandringhan Sands formation (Gill, 1950, 19530, 1957), whicll constitute the trpe sertion of the " ('heltenhamian " Stage (Singleton, 1941).

DIPROTODONTIDAE.
 Text-figures 3, 4.

Specimen M.U.G.D. reg. No. 2020 P³.
Palorchestes, Hall and Pritchard, 1897, p. 58.
Palorchestes, Cudmore, 1926, pp. 81-82.
Palorchestes, Colliver, 1933, p. 71.
"Palorchestes type ",(3) Gill, 1953c, p. 107.
Diprotodont, Stirton, 1954A.
Specimen P.15909, part of right maxillary. Also fragment P. 15910.
" Nototherium type ", (t) Gill, 1953c, p. 107.
Diprotodont, Stirton, 1954A.
The P", M.U.G.D. reg. No. 2020, though with the same preservation as P.15909, is badly abraded. Nevertheless I think its cusp arrangement can be determined (see Text-figure 3B).

Text-figure 3.
DIPROTODONTIDAE (size, medium), left $P^{3 \prime}$, natural size; M.U.G.D. reg. No. 2020, hy, hypocone; me, metacone; $p a$, paracone; pas, parastyle; $p r$, protocone. A. Occlusal view. B. Restoration of occlusal view.
(${ }^{3}$) -See footnote $1 . \quad\left({ }^{4}\right)$-See footnote 1.

Protocone, hypocone, paracone, metacone, and parastyle all well developed; paracone largest, not widely separated from metacone: parastyle at anterior angle of tooth; low stylar cusp in middle of labial side; basin between protocone, hypocone, and metacone; enamel surface smooth; hypocone and metacone connected posteriorly by low crest; outline of lingual and labial borders convex.

This is much like a P:s described by Glauert from the Mammoth Caves in Western Australia. It is also similar to "Nototherium " tasmanicum Scott, but differs in details from both.

Part of right maxillary with posterior moiety of M^{-}but with M^{3} and M^{4} complete may offer some useful information once additional data are available on other forms.

$$
\text { P. } 15909 .
$$

Teeth well preserved, slightly worn; bone abraded; jugal process M^{2} and anterior moiety of \mathbf{M}^{3}, low rounded ridge extends posteriorly from this process parallel to and 30 mm . above tooth row.
Measurements-

Median length	.	.	.	28.9 mm.
Width across middle	\ldots	.	18.1 mm.	

DIPROTODONTIDAE (size, medium), part of right maxillary; natural size; Nat. Mus. Vict., No. 15909; ant. cing., anterior cingulum; mel, metaloph; post. cing., posterior cingulum; prl, protoloph. A. Occlusal view. B. Labial view.
M^{2} with metaloph nearly transverse, only slightly crescentic; posterior cingulum continuous across posterior end of tooth, terminates at posterior oase of metacone and at posterolingual base of hypocone, stylar cusp at posterolingual base of hypocone, stylar cusp at posterolabial corner; evidently short cingulum across lingual opening of median valley.
M^{3} with anterior moiety wider than posterior moiety; protoloph transverse but slightly crescentic and slightly oblique; wide anterior cingulum not elevated at midpoint, terminates in stylar cusp at anterolabial corner of tooth, anterior cingulum as wide as protoloph, terminates lingually at anterior base of protocone: posterior cingulum not as wide as metaloph, smaller stylar cusp at posterolabial corner, not elevated at midpoint, terminates lingually at posterior base of hypocone; cingulum not continuous opposite protocone, hypocone, paracone, or metacone; short cingulum across lingual opening of median valley with small stylar cusp at posterolingual base of protocone; median valley wide; faint elevation of midlink like structure in median valley back of paracone: no stylar cusp at posterolabial base of paracone.
M^{4} like M^{3} but metaloph more crescentic and posterior moiety relatively and actually narrower.

Measurements-

Length M^{3} to $\mathrm{M}^{ \pm}$		$56 \cdot 6 \mathrm{~mm}$.
Length M^{3}		28.0 mm .
Length M^{4}		28.0 mm .
Width metaloph M ${ }^{2}$		20.9 mm .
Width protoloph M^{3}		25.4 mm .
Width metaloph M^{3}		21.6 mm .
Width protoloph M^{4}		23.8 mm .
Width metaloph M^{4}		18.5 mm .
Height paracone M^{3}		12.0 mm .
Height paracone M^{4}		11.2 mm .

Comparison of the Beaumaris maxillary with part of a large diprotodont maxillary from the Palankarinna fauna discloses a marked resemblance. The Beaumaris form differs in the following features from the Palankarinna specimen; posterior moieties relatively narrower transversely; anterior cingula with labial cusp less developed but distinct; no stylar cusp at posterior labial base of paracone; posterior edge of jugal arch apparently opposite anterior edge of M^{3}.

This specimen seems to be closely related but less advanced than a larger " notothere" (Stirton, 1954B, p. 1308) from Palankarinna. Unfortunately adequate types for these fossils are not yet available.

Specimen P. 15911.
Text-figure 5.
Sthenurus (?), Cudmore, 1926, pp. 81-82.
" Sthenurus type", (5). Gill, 1953c, p. 107.
? diprotodont, Stirton, 1954A.
This specimen unquestionably represents a new genus and probably a new subfamily. It is the anterior part of a heavily abraded right mandible with part of the symphysial surface. A cross-section of the root of the incisor is observable. Part of the lower ends of the two roots of P_{3} and only some of
${ }^{5}{ }^{5}$-See footnote 1.
the dentine is remaining of $M_{1}, ~ M_{2}$ is fairly well preserved but the enamel is missing on the labial base of the crown and also on the labial side of the protolophid.

Posterior edge of symphysis below anterior end of $M_{1} ; P_{:}$two rooted; $\mathrm{M}_{.2}$ elongate, relatively narrow for any known genus in the Diprotodontidae; protolophid possibly slightly wider than hypolophid; lophids transverse and slightly crescentic; posterior cingulum relatively short, does not curve anteriorly towards base of hypoconid, elevated at midpoint, without midpoint spur connecting to base of hypolophid; anterior cingulum also short, tapers down to labial corner; slight midlink extending out from hypoconid; no forelink or hindlink: apparently no short cingula across mouths of median valley; wide median valley; base of incisor flattened laterally; small round mental foramen 16 mm . below and 5 mm . in front of $\mathrm{P}_{:}$.

Text-figure 5.
DIPROTODONTIDAE (size, small), anterior end of heavily abraded mandible, natural size; Nat. Mus. Vict., No. P.15911. A. Occlusal view. B. Lingual view. C. Labial view. D. Front view.

There is another left mandible in the National Museum of Victoria (P.16279) from Chinchilla, Queensland. The Chinchilla specimen has $P_{::,} \mathrm{M}_{1}, \mathrm{M}_{2}$, and M_{4} in place. $P_{:}$is badly broken on the upper lingual surface but from the median crest there is a gently sloping labial surface and the basal cingulum which seems to be continuous around the tooth is quite distinct. The outline of P_{3} is ovate but wider in its posterior half. The lower molars agree with those in Meniscolophus (Stirton, 1954c) in an elevation of the posterior cingulum at the
midpoint but there is no spur-like connexion across to the base of the hypolophid as occurs in the Palankarinna form. Of course the molars are much smaller, lower crowned, more elongate and they differ from all known diprotodonts in many other features. The Chinchilla form has a forelink on M_{1} which may be diagnostic in this undescribed genus. The forelink is not present on the other molars. Nevertheless the massive mandible and the construction of the molars is more like the Diprotodontidae than like the Macropodidae. It is not referable to any other known family of marsupials.
.Measurements

Weti, Parish of Smeaton, Near Badlarat.

The mandible of a dasyurid with M_{4} and the posterior root of M_{1} in place was presented to the National Museum of Victoria, in 1914, by Mr. J. Marshall. Recently Mr. Edmund D. Gill found the first molar (M_{1}) which fits into the alveolus and contacts perfectly with the broken root in the posterior alveolus.

Though the geologic age of the specimen is not certainly known at this time, it seems that its stratigraphic position in the section at the Parish of Smeaton, can be estahlished (see (iill, 1957). The characters in this young mandible offer additional information on the relationships of Das!umbs. Dasymops and sarcophilus.

Gitancodon(6) bullantensis Stirton, n. gen. and n. sp. Text-figure 6.

Sarcophilus? Gill, 1953в, p. 87.
Type of genotypic species.-Glaucodon ballaratensis.
The diagnostic characters of the genus are those of the genotypic species until other species are described.

Holotype.-Right mandible with ascending ramus and part of angle missing; alveoli for three incisors, canine, two premolars and for the second and third molars; M_{1} and M_{4}. in place. Premineralization by vivianite displaying darkblueish colour particularly in the teeth. Animal evidently young adult. Nat. Mus. Vict. reg. No. P. 16136.

Type locality.-Taken from a depth of 50 feet in allotment 42, Parish of Smeaton, near Ballarat (for additional information see Gill 1957 of this memoir).

[^1]4637/55.-9

Diagnosis and Description.-Teeth larger but length of mandible only slightly longer than in Dasyurops maculatus (Kerr); alveoli of incisors crowded out of line, middle one above others, inner and middle ones equal $(2.1 \mathrm{~mm}$. dorsoventrally), outer one about $0 \cdot 1$ smaller, labial edges of incisor alveoli convex, inner edges straight or slightly concave; canine alveolus large, labial edge convex, inner edge slightly concave; alveoli for premolars crowded, no

Text-figure 6.
Glaucodon ballaratensis Stirton, n. gen. and n. sp., right mandible, natural size: Nat. Mus. Vict., No. P. 16136; end, entoconid; hyd, hypoconid; mer metaconid; $p a^{\text {d }}$, paraconid; $p r^{\text {d }}$, protoconid; $t l^{\text {d }}$, talonid. A. Lingual view B. Occlusal view. C. Labial view.
diastems C and M_{1}; alveoli for $P_{1}{ }^{(7)}$ set oblique to anteroposterior axis of tooth row and P_{2} alveoli slightly so, both teeth double rooted, alveoli for roots P more posteriorly directed, those of P_{2} more vertical and with posterior alveolus nearly twice as large as anterior one, alveoli indicate smaller gradation in size from $\mathrm{M}_{3}-\mathrm{M}_{1}$.
(\%)-If we assume that the premolar reduction in Dasyurops, Dasycercus, and Glaucodon was the same as that in Phascogalc, as indicated by its vestigial P_{3}, the remaining lower premolars in these genera are P_{1} and P_{2}.
M_{1} with heavy median protoconid, anterior median crest from base to top of protoconid, metaconid tightly appressed to posterolingual slope of protoconid, well developed talonid, hypoconid massive slightly crescentic, hypoconulid in posteromedian position at posterior end of hypoconid crescent, indication of tiny cusp of posterolabial crest of protoconid connecting across to hypoconid crescent in this stage of wear, entoconid as small rounded cusp, talonid basin with narrow lingual opening anterior and posterior to entoconid-no direct posterior opening; posterior lower labial corner extends farther posteriorly than other parts of the tooth. M_{4} with high sharp paraconid-protoconid shear, protoconid much higher than paraconid, not separated by deep niche in blade, protoconid with slight backward direction, inner surface somewhat flattened with distinct. vertical median ridge, metaconid much smaller than paraconid, talonid greatly reduced, small crescentic crest connecting hypoconid and entoconid, tiny posterolabial cingulum on talonid, basal cingulum on anterolabial surface. Small anterior mental foramen below anterior end of P_{2}, large posterior mental foramen below anterior end of M_{3}, opening of dental canal with $3 \cdot 3$ vertical diameter; lower end of masseteric fossa, angle and masseteric flange as in Dasyurops.

Comparison.-The characters in Glaucodon ballaratensis seem to indicate proximity of an intermediate relationship beween Dasyurus quoll (Zimmerman), the native cat, and Dasyurops maculatus (Kerr), the tiger cat, on the one hand and the undescribed Sarcophilus ${ }^{(8)}$ from the Pliocene at Kalamurina from the Warburton River in South Australia on the other.

It differs from Dasyurus and Dasyurops and tends to approach the Kalamurina Sarcophilus in several features: alveoli of incisors crowded out of line, middle one above others, alveoli of premolars crowded, no diastems between C and M_{1}; alveoli for P_{1} set oblique to anteroposterior axis of tooth row, and P_{s} alveoli slightly so, posterior alveolus of P_{2} nearly twice as large as anterior one; M_{1} cusps more massive not so trenchant; $\mathrm{M}_{ \pm}$with higher paraconid shear. protoconid and paraconid not separated by deep niche; protoconid with higher apex, apex with slightly stronger backward direction, and with distinct median-vertical-lingual ridge, metaconid smaller than paraconid but not vestigial; talonid greatly reduced, with less bicuspid aspect.

Glaucodon differs from the Kalamurina as well as the later species of Sarcophilus and tends to approach Dasyurops, particularly, in: proportions of horizontal ramus; shape of masseteric fossa, angle, and masseteric flange; more 1 renchant molars with longer and more distinctly bicuspid talonids; $\mathrm{M}_{\text {i }}$ with paraconid shear relatively and actually lower. apex not so strongly directed posteriorly, inner surface somewhat flattened, median-vertical-lingual ridge on protoconid not as prenounced; metaconid still present not vesticial.
${ }^{(s)}$--The Sarcophilus from Kalamurina is more closoly related to S. laniarius (Owen) from the Wellington Caves and slsewhere in Pleistocene assemblages tin? to the living S. harrisii Boitard.

Neasurvment

（ットリ トバリ）
ง．wolle

langth，anterior edge of incisor alveoli to posterior end of M_{4}
length，molar series ．．

Lenyth between（：amd M_{1}
$\times 7$
$13 \cdot$
$10 \cdot 3$

1anoth H_{1}

Width of M_{1}	$3 \cdot 1$	$3 \cdot 4$	－ 5	$10 \cdot 6$	$\therefore \cdot \underline{2}$	$6 \cdot 3$
Height of protoconid of H_{1} abowe edge of enamel of anterior root	$\therefore \underline{\square}$	$15 \cdot 1$	$9 \cdot 1$	12．1	1．） 2	$\begin{gathered} 9 \cdot k \\ \text { (worn) } \end{gathered}$
Iepth of mandille below P_{2} ， measured from tip of bone between roots	7．0	3．2	$110 \cdot 1$	20.1	23.7	$18 \cdot 1$
Depth of mantible below M_{4} ． measured from tip of bone between roots	$9 \cdot 2$	$11 \cdot 0$	$17 \cdot 3$	$27 \cdot 7$	$28 \cdot 6$	21：3
Thiekness of mandible below M_{4}	$4 \cdot 1$	$6 \cdot 1$	6.7	$11 \cdot 2$	$12 \cdot 5$	$10 \cdot 1$
Length M_{1}	$4 \cdot 5$	$4 \cdot 9$	$7 \cdot 6$	$9 \cdot 2$	$10 \cdot 6$	
Width M_{1}	$2 \cdot 7$	$2 \cdot 9$	$4 \cdot 2$	$6 \cdot 1$	7.1	

Thylacynus cynocephalus (Harris) with its three premolars, absence of metaconid (as in Sarcophilus-evidently convergent characters), and shape of the angle seems to be rather widely removed in its relationships.

If Glaucodon was a dasyurid in the direct ancestry of the known species of Sarcophilus, judged by its stage in evolution, it could be as old as late Miocene or slightly older. If it is Pliocene or later it must represent a primitive form lingering on that shows some features of an early evolutionary stage in the group. The reduction in the size of the metaconid and of the talonid preclude its having given rise to any of the genera now known other than Sarcophilus. Perhaps these questions will be answered through future discoveries.

SIMMARY.

Whree localities in Victoria, Australia, hatre yielded five fiagmentary marsupials of Tertiary age. A fonrth locality near Ballarat has yielded a sperimen of possible 'Lertiary age. A diprotodont (Diprotodontidae) of medinm size and a smaller more primitive one oceur in marine beds, near Beaumaris. These fossils were found on the tide-swept shore platform, but the preservation and huorine tests indicate that they come from the contiguous cliffs which consist of beds of Upper Miocene age (Gill, 1953A, 1957). Part of a mandible with one tooth from Forsyth's Bank, Grange Buru, near: Hamilton, is referable to the Macropodid subfamily Sthenurinac. It is much smaller than Sthenurus atlas Owen. The marine bed in which it was found, and to which it has been shown to belong by fluorine test is of Lower Pliocene age (Gill, 1953A, 1955, 1957). An upper molar of a cuscus from a fossil podsol near Hamilton, has been dated as Upper Pliocene. The tooth is nearly twice as large as in other Australian species. A dasyurid mandible from near. Ballarat with one nolar in place is deseribed as Grlaucodon ballaratensis Stirton, n. gen. and n. sp. Characters in the specimen suggest proximity to an intermediate relationship between Dasyurops and Drisyurus on the one hand and to the sarcoplilenes. on the other. The specimen is suggestive of a position leading toward Sarcophilus.

Oharacters in these fossil mansupials do not as yet confirm or offer evidence to question the ages assigned. This is due in part to our inadequate knowledge of the evolution in Australian marsupials. As our evidence increases, however, these records of land mammals in marine formations will be most helpful in establishing synchrony in the deposition of continental and marins stratigraplic units in Australasia.

Generic and specific names have not been applied, except in one specimen, becanse of incompleteness in the elements preserved and because of the confusion likely to ensue for taxonomists in the future.

LITERATURE REFERENCES.

Colliver, F. S., 1933.-Some interesting fossils from the Tertiary deposits of the Grange Burn. Vict. Nat. 50 (3): 71-73.
Cudmore, F. A., 1926.-Extinct vertebrates from Beaumaris. Vict. Nat. 43 (3): 78-82.
De Vis, C. W., 1895.-A review of the fossil jaws of the Macropodidae in the Queensland Museum. Proc. Linn. Soc. N.S.W. 10 (1): 75-133.
Gill, E. D., 1950.-Nomenclature of certain Tertiary sediments near Melbourne, Victoria, Proc. Roy. Soc. Vict. 62: 165-171.
Gill, E. D., 1952.-Range in time of the Australian Tertiary flora. Aust. Journ. Sci. 15: 47-48. --, 1953A.-Fluorine tests in Australia on the Keilor Skull and a Tertiary marsupial. Nature 172: 409-411.
--,1953B.-Distribution of the Tasmanian devil, the Tasmanian wolf, and the dingo in S.-E. Australia in Quaternary time. Vict. Nat. 70: 86-90.

- 1953c.-Australian Tertiary marsupials. Aust. Journ. Sci. 16 (3): 106-108.
-, 1955 . - Fluorine-phosphate ratios in relation to the age of the Keilor Skull, a Tertiary marsupial, and other fossils from Western Victoria. Mem. Nat. Mus. Melb. 19.
1957.-The stratigraphic occurrence and palacoecology of some Australian Tertiary marsupials. This Memoir.
Glauert, L., 1910.-Fossil marsupials of Western Australia, The Mammoth Cave. Rec. W. Aust. Mus. 1 (1): 11-38.
Hall, T. S. and Pritchard, G. B., 1897.-Note on a tooth of Palorchestes from Beaumaris. Proc. Roy. Soc. Vict. 10 (1): 57-95.
Owen, R., 1874.-On the fossil mammals of Australia. Part viii., Family Macropodidae: genera, Macropnus, Osphranter. Phascolagus, Sthenurus and Protemnodon. Phil. Trans. Roy. Soc. London. 164 (1): 245-287.
Singleton, F. S., 1941.- The Tertiary geology of Australia. Ibid. 53 (1) : 1-125.
Stirton, R. A., 1954A. Marsupials from the marine "Cheltenhamian Stage," (late Tertiary) of Victoria, Australia. (Abstract.) Bull. Geol. Soc. Amer. 65 (12:2): 1351.
, 1954b.-Late Tertiary marsupials from South Australia. (Abstract.) Ibid. 65 (12:2): 1308.
- 1954c. Ibid. Rec. South Aust. Mus. 11 (3): 247-268.

[^0]: ${ }^{(3)}$-In the citation "Cuscus type" and in other similar references in synonomy in this report, it should be borne in mind the author (Gill) was attempting to indicate that the specimen in question, though showing affinity with the genus named, was not necessarily referable to that genus.

[^1]: ${ }^{(6)}$ - λ yavкós, blue; ỏ ooẃv, tooth. Colour in type specimen.

